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Finding transition paths and rate coefficients through accelerated Langevin dynamics
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We present a technique to resolve the rare event problem for a Langevin equation describing a system with
thermally activated transitions. A transition event within a given time intervdt)(@an be described by a
transition path that has an activation part durind¢.and a deactivation part duringy( ,t;) (0<ty<ts). The
activation path is governed by a Langevin equation with negative friction while the deactivation path by the
standard Langevin equation with positive friction. Each transition path carries a given statistical weight from
which rate constants and related physical quantities can be obtained as averages over all possible paths. We
demonstrate how this technique can be used to calculate activation rates of a particle in a two dimensional
potential for a wide range of temperatures where standard molecular dynamics techniques are inefficient.
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The calculation of activation and transition rates of dy-approximationson the dynamical evolution of the system. It
namical processes dominated by rare events is one of thaso allows one to compute rates at low temperatures where
most important problems in physics, chemistry, and manytandard MD methods are impractical, thus overcoming the
other fields. Various approximation schemes have been enfiare event problem.
ployed in the past to overcome this problem. The prevalent The ALD method is based on the idea that the physical
approximation for evaluating the rate of rare activation pro-duantities obtained from the solution of the LE can be ex-
cesses is the transition state thed®ST) [1]. Of central Pressed as averages over relevant transition paths1. In
importance in the application of TST is the identification of an earlier wor{11] we showed that taking into account only
the so-called transition state. For complicated systems, th&e most probabléminimal action) path, a transition event
determination of the transition state alone is a daunting taskan be described in a manner of accelerated dynamics by
and many different methods have been developed for thi§éWing an activation path to a deactivation path, forming a
purpose[2—4]. Based on the fundamental assumptions oficined path. The activation path is generated dgetermin-
TST, the hypermolecular dynami¢MD) scheme by Voter istic) Newtonian equation with negative friction while the
[5] boosts dynamical processes over the saddle points b§eactivation path by a regular Newtonian equation with posi-
modifying the potential. There are also other acceleratiodlVe friction. The joined path thus generated is very efficient
schemes such as temperature accelerated [BIDthat is for describing transitions over a barrier, tracing only the ac-
based on the harmonic TST. While TST has been fairly suctive part of the process without waiting for the long period of
cessful in various applications, the approximation is known_small o_sc_lllanons in the minima. Here we show that this idea
to break down in the high and low friction regimggl. Be-  is not limited to only the most probable path but is generally
yond TST, perhaps the most ambitious method is the transialid for all the paths. We show that negative and positive
tion path approacti4,8,9 with which the rates are deter- friction in the corresponding stochastic LE's can be used to
mined as an average of correlations along the transitio§eneratell possible transition paths with their proper statis-
paths. This approach carries a significant benefit in its capdical weights, without any approximations such as TST.
bility to survey multiple saddle points and rugged potential 10 illustrate the ALD technique, we study the dynamics of
energy surfaces. The success of this approach, of coursg particle in a two-dimension&2D) potential obeying stan-
depends upon efficient path sampling algorittdik In this ~ dard Langevin dynamics. The pote.nt|allchosen here is the
paper, we present a simple and efficient method to generaf€ that has been thoroughly examined in [R&f. The con-
(sampl@ transition paths. It is also an efficient method for tour plot of the potentiaV(x,y) is shown in Fig. 1. The
solving the Langevin equatioi.E) describing the stochastic shape of the wells and the location of the saddle point make
dynamics of a given system. This accelerated Langevin dytfethods such as the slowest ascent path il
namics(ALD) method starts from an initial stable state. It ~ The standard Langevin equation in its dimensionless form
does not require any prior knowledge of the saddle point ofor the particle is
the final state. Thus it is a one-point boundary scheme in ) _
contrast to two-point boundary schemes such as the nudged r(t)+yr(t)+VV(r(t))= &), (1)
elastic band 3], or those of Ref[4]. ALD provides for a
simple way tosimultaneouslysurvey the potential energy wherer=(x,y), and&(t) = (&.(t),&,(t)) is white noise with
surface, to find the saddle points, and to evaluate the correzero mean and correlations
sponding rates. It works even in the case of multiple saddle
points and final stable or metastable states, and ma&es (&(DE(t))=2(yIB) s 6(t—t'), (2
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FIG. 1. Contour plot olV/(x,y). The potential well 1 is located 15

at x=3.00y=—1.30, well 2 atx=0.741y=1.30, and the saddle 2
point atx=2.02y=—0.173. 0 05 1 15 2 25 3 35

with B=1/kgT and y being the dimensionless frictional £ 2 Four typical transition paths faf(x,y) using the ALD
(damping coefficient. For simplicity, here and in the rest of method. The inverse temperatyse- 20 and frictiony=0.3.

the paper we omit the vector notations. The transition prob-

ability P(0[f)=P(ro,vo,to|r¢,vy,ty) for a transition from  gance with the correlations @{t) as defined in Eq2). The
state (o,vo) at tp to state (r,vq) atty can be built via  ynysual feature is that along the path(t), the system

intermediate states & (0<ty<ts) as gainsenergy through the negative friction and is thus able to
escape the well into the saddle-point region without spending
fo T fo Tm time performing oscillations in the minimum. The rare nature
P| vyo vt :J J drydvyP| vo vwm of the event is explicitly accounted for by the factor
to  t to  tw ex;{Zth—,B(EM—EO)] in Eq. (5). The deactivation part
P(M|f) can be obtained by sampling paths,(t) that are
rm  Is solutions to the standard LE of E@L) with the initial con-
<Pl vm vil. 3 dition [r(ty)=rm.r(tym)=vm], for various realizations of
M f
This formal decomposition is useful for evaluating the tran- fm T
sition rate if the first parP(0|M) describes activation to- Pl vm vs =J’ [DEIPLE()JAlr 1, (tr) —r¢]

wards or close to the saddle point, and the second part
P(M|f) deactivation to the next minimum. However, the
activation part occurs with a very small probability, so the X 5['r+y(tf)—vf]. (6)
direct sampling of the paths through the solution of the regu-
lar LE poses the same problem as encountered in standafithus we have a one-point boundary scheme to sample tran-
MD techniques. One way to overcome this problem is tosition paths. Each sampled path ris (t) for to<t<ty
solve a LE that has negative instead of positive friction. Itjoined tor . (t) for ty<t=<t;. The first partr_ (t) is ob-
can be shown through path integral manipulatiph] that  tained by integrating activation LE of E¢) from the initial
the activation partP(0|M) can be obtained by sampling condition (y,v,) attq to ty while r.,(t) is obtained by
pathsr _(t) that are solutions to the LE withegativefric- integrating the standard LE fronx ,vy) atty to t;. Be-
tion — vy, cause of the sampling of the first path from the negative
) ) friction LE, the rare event problem is resolved. It is also clear
r(t)—yr(t)+VV(r(t))=é&t). (4)  from the formalism that the ALD provides true dynamics
o ) with no approximations involved.
This yields the expression We have applied the ALD to the model potential of Fig. 1,
and some typical transition paths are shown in Fig. 2. As
fo Tm expected, with a sensible choicetgf most of the paths pass
Pl vo uvm|=exd2yty—B(Ey— EO)]I [DEIPLE(T)] very close to the saddle point. In fact, ALD is exact for any
to<ty<t; but it is naturally most efficient it,, roughly
corresponds to a typical activation time to the saddle point,
X5[r—y(tM)_rM]é\[i‘—'y(tM)_UM]- (5) since high-energy paths have an exponentially decreasing
weight as can be seen from E&). This time can be easily
In this expression, the Gaussian random faf¢® is gener-  estimated if the saddle point is known, or by integrating the
ated with its statistical weight function®[ £(t)], in accor-  activation LE and checking for a transition, e.g., by simple

tw b

to tm
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FIG. 3. Total energ)E vs timet along the paths 1-4 corre- -16 [ A
sponding to Fig. 2E has been measured relative to the minimum 1. 17 L L L L LY

minimization[6]. In Fig. 3 we show the time dependence of 1/kgT
the total energy corresponding to the four paths that reveal

the activated and deactivated nature of the two sections of /G- 4 AnArrhenius plot of the activation rale ., from well
1 to well 2 vs the inverse temperatyse- 1/kgT. The dashed line is

the paths. y . -
To calculate the transition rate,_,, we follow Ref.[4] fitto the data giving=,=1.8+0.1.
and relate it to microcopic correlations as erned by a LE with anegativefriction while the deactivation

path by a regular LE. Each such joined path carries a given
d statistical weight given exactly by the path integral form. The
Ky o= Ty (t))) d—tf<h1(r(to))h2(r(tf))>, @) problem of activating rare events is resolved due to the acti-
vation by negative friction in the first part of the path. Physi-
ct -1 V(i — ; cal quantities such as transition rates can be calculated ex-
for Iy<ty=(ki.ptkp 1) -, wherehi(r)(i=1,2) is the actl;1 as weighted averages over all possible paths, without
invoking the TST approximation. As an illustration of this
formalism, it has been applied to study the activation rate of
a particle in a 2D model potential for a wide range of tem-
peratures.

In a system with many degrees of freedom with strong
interactions, the rare transition events one is interested in
generally correspond to a few active degrees of freedom

aining high enough energy. Again, direct simulations at low
emperatures are often intractable. However, we can apply
) o : the negative friction LE selectively to the active degrees of
barrier that agrees within the error bars with the exact Valu?reedom and simulate the other degrees of freedom using the

of Ex=1.75. .regular LE. Details and applications of this generalization of
In summary, we have presented an accelerated dynamufﬁe method will be published elsewhere

technique to numerically solve LE’s describing thermally ac-

tivated transitions. A transition event within a given time  This work has been supported, in part, by a UTSA faculty
interval (to,ts) is conveniently described by a path that hasresearch program and by the Academy of Finland through its
an activation part duringt,ty), joined together with a de- Center of Excellence program. We wish to thank F. Montal-
activation part during t¢, ,t;). The activation path is gov- enti, O. Trushin, and P. Salo for useful discussions.

characteristic function for the low-energy states in wé#].
The correlator is computed with the transition probability
formulated in Eq(3), with Egs.(5) and(6). The time deriva-
tive in Eq. (7) has a well-defined plateau as long ay 1/
<(k;_,+k,_.1) L. The rate constark; ., has been evalu-
ated for inverse temperatures frof=8 to =20 and is
shown in Fig. 4. To obtain each point in the figure, 50 initial
states ((,v() were sampled and for each initial state 20 000
joined paths were taken into account. The slope of th
Arrhenius plot yields a value of 1:80.1 for the activation
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